The essential role of Oct-2 in LPS-induced expression of iNOS in RAW 264.7 macrophages and its regulation by trichostatin A.
نویسندگان
چکیده
This article reports on a study of the effect of trichostatin A (TSA), an inhibitor of histone deacetylase, on lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophages and its underlying mechanisms. TSA pretreatment potently diminishes LPS-stimulated nitric oxide (NO) release and both mRNA and protein levels of iNOS in macrophages. The effects of TSA and LPS on transcription factors binding to two LPS-responsive elements within the iNOS promoter, one binding the NF-kappaB site and the other the octamer element, were investigated. Results show that TSA did not alter the LPS-activated NF-kappaB activity demonstrated by the nuclear translocation of p50 and p65 and by a NF-kappaB-driven reporter gene expression system. In addition, neither TSA nor LPS changed the expression of Oct-1, a ubiquitously expressed octamer binding protein. However, TSA suppressed the LPS-induced expression of Oct-2, another octamer binding protein, at both mRNA and protein levels. Chromatin immunoprecipitation assays revealed that binding of Oct-2 to the iNOS promoter was enhanced by LPS treatment; however, pretreatment with TSA resulted in loss of this binding. Moreover, forced expression of Oct-2 by transfection of pCG-Oct-2 plasmid restored the TSA-suppressed iNOS expression elevated by LPS stimulation, further indicating that Oct-2 activation is a crucial step for transcriptional activation of the iNOS gene in response to LPS stimulation in macrophages. This study demonstrates that TSA diminishes iNOS expression in LPS-treated macrophages by inhibiting Oct-2 expression and thus reducing the production of NO.
منابع مشابه
Thiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages
The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...
متن کاملThiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages
The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...
متن کاملFluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat
Objective(s): Fluvoxamine is a well-known selective serotonin reuptake inhibitor (SSRI); Despite its anti-inflammatory effect, little is known about the precise mechanisms involved. In our previous work, we found that IP administration of fluvoxamine produced a noticeable anti-inflammatory effect in carrageenan-induced paw edema in rats. In this study, we aimed to evaluate the effect of fluvoxa...
متن کاملCitrus unshiu flower inhibits LPS-induced iNOS and COX-2 via MAPKs in RAW 264.7 macrophages
In the present study, we investigated the effects of Citrus unshiu flower on regulatory mechanisms of cytokines and nitric oxide (NO) involved in immunological activity of RAW 264.7 macrophages. Our results indicated that ethyl acetate fraction of Citrus unshiu flower (CUF-EA) downregulated LPS-induced nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, thereby reducing t...
متن کاملPleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways
BACKGROUND Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 296 5 شماره
صفحات -
تاریخ انتشار 2009